Discussion: Why the World Won't End


No Doomsday in 2012



Apparently, the world is going to end on December 21st, 2012. Yes, you read correctly, in some way, shape or form, the Earth (or at least a large portion of humans on the planet) will cease to exist. Stop planning your careers, don’t bother buying a house, and be sure to spend the last years of your life doing something you always wanted to do but never had the time. Now you have the time, four years of time, to enjoy yourselves before… the end.

So what is all this crazy talk? We’ve all heard these doomsday predictions before, we’re still here, and the planet is still here, why is 2012 so important? Well, the Mayan calendar stops at the end of the year 2012, churning up all sorts of religious, scientific, astrological and historic reasons why this calendar foretells the end of life as we know it. The Mayan Prophecy is gaining strength and appears to be worrying people in all areas of society. Forget Nostradamus, forget the Y2K bug, forget the credit crunch, this event is predicted to be huge and many wholeheartedly believe this is going to happen for real. Planet X could even be making a comeback.

For all those 2012 Mayan Prophecy believers out there, I have bad news. There is going to be no doomsday event in 2012, and here’s why…


The Mayan Calendar


 So what is the Mayan Calendar? The calendar was constructed by an advanced civilization called the Mayans around 250-900 AD. Evidence for the Maya empire stretches around most parts of the southern states of Mexico and reaches down to the current geological locations of Guatemala, Belize, El Salvador and some of Honduras. The people living in Mayan society exhibited very advanced written skills and had an amazing ability when constructing cities and urban planning. The Mayans are probably most famous for their pyramids and other intricate and grand buildings. The people of Maya had a huge impact on Central American culture, not just within their civilization, but with other indigenous populations in the region. Significant numbers of Mayans still live today, continuing their age-old traditions.

The Mayans used many different calendars and viewed time as a meshing of spiritual cycles. While the calendars had practical uses, such as social, agricultural, commercial and administrative tasks, there was a very heavy religious element. Each day had a patron spirit, signifying that each day had specific use. This contrasts greatly with our modern Gregorian calendar which primarily sets the administrative, social and economic dates.


Most of the Mayan calendars were short. The Tzolk’in calendar lasted for 260 days and the Haab’ approximated the solar year of 365 days. The Mayans then combined both the Tzolk’in and the Haab’ to form the “Calendar Round”, a cycle lasting 52 Haab’s (around 52 years, or the approximate length of a generation). Within the Calendar Round were the trecena (13 day cycle) and the veintena (20 day cycle). Obviously, this system would only be of use when considering the 18,980 unique days over the course of 52 years. In addition to these systems, the Mayans also had the “Venus Cycle”. Being keen and highly accurate astronomers they formed a calendar based on the location of Venus in the night sky. It’s also possible they did the same with the other planets in the Solar System.

Using the Calendar Round is great if you simply wanted to remember the date of your birthday or significant religious periods, but what about recording history? There was no way to record a date older than 52 years.

The end of the Long Count = the end of the Earth?


 The Mayans had a solution. Using an innovative method, they were able to expand on the 52 year Calendar Round. Up to this point, the Mayan Calendar may have sounded a little archaic – after all, it was possibly based on religious belief, the menstrual cycle, mathematical calculations using the numbers 13 and 20 as the base units and a heavy mix of astrological myth. The only principal correlation with the modern calendar is the Haab’ that recognised there were 365 days in one solar year (it’s not clear whether the Mayans accounted for leap years). The answer to a longer calendar could be found in the “Long Count”, a calendar lasting 5126 years.

I’m personally very impressed with this dating system. For starters, it is numerically predictable and it can accurately pinpoint historical dates. However, it depends on a base unit of 20 (where modern calendars use a base unit of 10). So how does this work?


The base year for the Mayan Long Count starts at “0.0.0.0.0″. Each zero goes from 0-19 and each represent a tally of Mayan days. So, for example, the first day in the Long Count is denoted as 0.0.0.0.1. On the 19th day we’ll have 0.0.0.0.19, on the 20th day it goes up one level and we’ll have 0.0.0.1.0. This count continues until 0.0.1.0.0 (about one year), 0.1.0.0.0 (about 20 years) and 1.0.0.0.0 (about 400 years). Therefore, if I pick an arbitrary date of 2.10.12.7.1, this represents the Mayan date of approximately 1012 years, 7 months and 1 day.

This is all very interesting, but what has this got to do with the end of the world? The Mayan Prophecy is wholly based on the assumption that something bad is going to happen when the Mayan Long Count calendar runs out. Experts are divided as to when the Long Count ends, but as the Maya used the numbers of 13 and 20 at the root of their numerical systems, the last day could occur on 13.0.0.0.0. When does this happen? Well, 13.0.0.0.0 represents 5126 years and the Long Count started on 0.0.0.0.0, which corresponds to the modern date of August 11th 3114 BC. Have you seen the problem yet? The Mayan Long Count ends 5126 years later on December 21st, 2012.

Doomsday


 When something ends (even something as innocent as an ancient calendar), people seem to think up the most extreme possibilities for the end of civilization as we know it. A brief scan of the internet will pull up the most popular to some very weird ways that we will, with little logical thought, be wiped off the face of the planet. Archaeologists and mythologists on the other hand believe that the Mayans predicted an age of enlightenment when 13.0.0.0.0 comes around; there isn’t actually much evidence to suggest doomsday will strike. If anything, the Mayans predict a religious miracle, not anything sinister.

Myths are abound and seem to be fuelling movie storylines. It looks like the new Indiana Jones and the Kingdom of the Crystal Skull is even based around the Mayan myth that 13 crystal skulls can save humanity from certain doom. This myth says that if the 13 ancient skulls are not brought together at the right time, the Earth will be knocked off its axis. This might be a great plotline for blockbuster movies, but it also highlights the hype that can be stirred, lighting up religious, scientific and not-so-scientific ideas that the world is doomed.


Some of the most popular space-based threats to the Earth and mankind focus on Planet X wiping most life off the planet, meteorite impacts, black holes, killer solar flares, Gamma Ray Bursts from star systems, a rapid ice age and a polar (magnetic) shift. There is so much evidence against these things happening in 2012, it’s shocking just how much of a following they have generated. Each of the above “threats” needs their own devoted article as to why there is no hard evidence to support the hype.

But the fact remains, the Mayan Doomsday Prophecy is purely based on a calendar which we believe hasn’t been designed to calculate dates beyond 2012. Mayan archaeo-astronomers are even in debate as to whether the Long Count is designed to be reset to 0.0.0.0.0 after 13.0.0.0.0, or whether the calendar simply continues to 20.0.0.0.0 (approximately 8000 AD) and then reset. As Karl Kruszelnicki brilliantly writes:

“…when a calendar comes to the end of a cycle, it just rolls over into the next cycle. In our Western society, every year 31 December is followed, not by the End of the World, but by 1 January. So 13.0.0.0.0 in the Mayan calendar will be followed by 0.0.0.0.1 – or good-ol’ 22 December 2012, with only a few shopping days left to Christmas.” – Excerpt from Dr Karl’s “Great Moments in Science“.

2012: No Planet X


I’m sorry, but the “facts” behind the Planet X/Nibiru myth simply do not add up. Don’t worry, Planet X will not be knocking on our door in 2012 and here’s why…

Nibiru and Planet X


In 1843, John Couch Adams (a British mathematician and astronomer) studied the orbital perturbations of Uranus and deduced that through gravitational interactions, there must be an eighth planet, tugging at the gas giant. This led to the discovery of Neptune, orbiting at a distance of 30AU from the Sun. There have been numerous occasions where this method has been used to deduce the existence of other bodies in the Solar System before they were directly observed.

Neptune was also experiencing orbital perturbations, and on the discovery of Pluto in 1930, it was thought that the aptly named “Planet X” had been discovered. Alas, Pluto’s mass was tiny, and once the orbit of Charon (Pluto’s moon) was analysed it was found that the mass of the Pluto-Charon system was far too small to affect the orbit of Neptune. The hunt for Planet X continued…

After years of speculation and historic research, it was believed that a huge body astronomers were looking for was a huge planet or a small star, possibly a companion to our Sun (making the Solar System a binary system). The name “Nibiru” was unearthed by the author Zecharia Sitchin, on researching the possible intervention of extraterrestrials in the early history of mankind. Nibiru is a hypothetical planet as taught in ancient Sumerian culture (the Sumerians existed from around 6,000BC to 3,000BC, predating Babylon, in the current geographic location of Iraq). There is very little archaeological evidence to suggest this mythical planet has anything to do with Planet X. But since this dubious connection, Planet X and Nibiru are now thought by doomsayers to be the same thing, an ancient astronomical body that has returned after a long orbit beyond the Solar System.

OK, so the Nibiru/Planet X connection might be a bit ropey already, but is there any solid evidence for the modern-day Planet X?

Infrared observations = Planet X


 There is much emphasis placed on the 1983 “discovery” of a mysterious heavenly body by NASA’s Infrared Astronomical Satellite (IRAS) on the outskirts of the Solar system, some 50 billion miles (540 AU) away. Naturally the world’s media will have been very excited by such a discovery and began making noises that perhaps this was Planet X (the most popular accessible resources for Planet X advocates is the Washington Post article published on December 31st 1983 titled “Mystery Heavenly Body Discovered“). In actuality, astronomers weren’t sure what the infrared object was (the clue is in the word “mystery”). Initial media reports postulated that it could be a long-period comet, or a planet, or a far-off young galaxy or a protostar (i.e. a brown dwarf). As soon as the last possibility is mentioned, suddenly this became the “discovery” that Planet X was in fact a brown dwarf orbiting in the outer reaches of our Solar System.

“So mysterious is the object that astronomers do not know if it is a planet, a giant comet, a nearby “protostar” that never got hot enough to become a star, a distant galaxy so young that it is still in the process of forming its first stars or a galaxy so shrouded in dust that none of the light cast by its stars ever gets through.” – Thomas O’Toole, Washington Post Staff Writer, December 30th 1983 (from text on the Planet X and Pole Shift website)

So where did the Washington Post get its story? The story was published in response to the research printed a paper titled “Unidentified point sources in the IRAS minisurvey” (by Houck et al, published in Astrophysical Journal Letters, 278:L63, 1984). Dr. Gerry Neugebauer, co-investigator in the IRAS project, was interviewed and strongly stated that what IRAS had seen was not “incoming mail” (i.e. the results did not suggest there was an object approaching Earth). On reading this interesting research, I was especially drawn to the paper’s conclusion:

“A number of candidate identifications have been considered including near-solar system, galactic, and extragalactic objects. Further observations at infrared and other wavelengths may provide additional information in support of one of these conjectures, or perhaps these objects will require entirely different interpretations.” – Houck et al, Astrophysical Journal Letters, 278:L63, 1984.

Although these IRAS observations were seeing mysterious objects, at this stage, there was no indication that there was an object (let alone a brown dwarf) powering its way toward us. But the rumours had already begun to flow. When follow-up papers were published in 1985 (Unidentified IRAS sources – Ultrahigh-luminosity galaxies, Houck et al., 1985) and 1987 (The IRAS View of the Extragalactic Sky, Soifer et al., 1987), there was little if any media interest in their findings. According to these publications, most of the IRAS observations in the 1984 paper were distant, ultra-luminous young galaxies and one was a filamentary structure known as “infrared cirrus” floating in intergalactic space. IRAS never observed any astronomical body in the outer reaches of the Solar System.

Orbital perturbations = Planet X


 In addition to the 1983 “discovery” of the Planet X brown dwarf, the 1992 Planet X claim goes something like this: “Unexplained deviations in the orbits of Uranus and Neptune point to a large outer solar system body of 4 to 8 Earth masses, on a highly tilted orbit, beyond 7 billion miles from the sun,” – text from an un-cited NASA source on the “Planet X Forecast and 2012 Survival Guide” video.

Pulling up the discovery of planets using orbital perturbation measurements, Planet X advocates point to a NASA announcement that in 1992, there were indirect measurements of a planet some 7 billion miles from Earth. Alas, I cannot find the original source for this claim. The only huge discovery NASA announced along these lines was the discovery of the first major trans-Neptunian object (TNO) called 1992 QB1 (full details of the discovery of this “cubewano-class” object can be found in the original announcement transcript). It has a diameter of 200km and is confined to the Kuiper Belt, a zone of minor planets (where Pluto lives) and asteroids from 30AU to 55AU, just outside Neptune’s orbit. Some of these bodies (like Pluto) cross the path of Neptune’s orbit and there therefore designated as a TNO. These TNO’s pose no threat to the Earth (in as much as they wont be leaving the Kuiper Belt to pay us a visit in 2012).

Since then, any Neptune orbital perturbations have been put down to observational error and have since not been observed… so there doesn’t appear to be any obvious object any bigger than the largest Kuiper Belt objects out there. Still, to keep an open mind, there could be more large bodies to be discovered (that might explain why there is such a steep drop-off of Kuiper Belt objects at the “Kuiper Cliff”, the jury is out on that idea), but there is no evidence for a massive body approaching from the vicinity of the Kuiper Belt. Even the strange Pioneer anomaly that the Pioneer and Voyager probes are experiencing cannot be attributed to Planet X. This anomaly appears to be a Sun-ward acceleration, if there was a massive planet out there, there should be some gravitational effect beyond what has been predicted by the other known objects in the Solar System.

4-8 Earth masses = a brown dwarf? It must be Planet X.


 Probably the most glaring inconsistency in the Planet X hypothesis is the Planet X advocates assertion that the 1984 IRAS object and the 1992 body are one of the same thing. As announced on many websites and online videos about Planet X, the 1984 IRAS observation saw Planet X at 50 billion miles from Earth. The 1992 NASA “announcement” put Planet X at a distance of about 7 billion miles from Earth. Therefore, the logic goes, Planet X had travelled 43 billion miles in the course of only eight years (from 1984 to 1992). After some dubious mathematics, Planet X is therefore expected to reach the core of the Solar System in 2012. (Although many believed it should arrive in 2003… they were obviously wrong about that prediction.)

Well, I think we might be clutching at straws here. For starters, for the 1984 object to be the same as the 1992 object, surely they should be the same mass? If Planet X was a brown dwarf (as we are led to believe in the IRAS observations), how can it possibly weigh in at only 4 to 8 Earth masses eight years later? Brown dwarfs have a mass of around 15-80 Jupiter masses. As Jupiter is about 318 Earth masses, surely the object hurtling toward us should have a mass of somewhere between 4,770 and 25,440 Earth masses? So I am going to go out on a limb here and say that I reckon the 1984 object and the 1992 object (if either object actually existed that is) are not the same thing. Not by a very long shot.

If there is no evidence supporting Planet X, it must be a conspiracy

 If it can be this easy to cast the fundamental “scientific” theory behind Planet X into doubt, I see little point in discussing the historical reasons (mass extinctions, volcanic activity, earthquakes etc.) as to why the doomsayers believe Planet X should exist. If there is no renegade planet out there of significant mass, how can Nibiru be a threat to us in 2012?

They will have us believe there is a global conspiracy of international governments hiding the facts from us. NASA is involved in the cover-up, hence the lack of evidence. In my opinion, simply because there is no evidence, doesn’t mean there is a conspiracy to hide the truth from the public. So why would governments want to hide a “discovery” as historic as a doomsday planet approaching the inner Solar System anyway? To avoid mass panic and pursue their own, greedy agendas (obviously).

As it turns out, this is the only strength behind the Planet X myth. When confronted with scientific facts, the Planet X advocates reply with “…governments are sending out disinformation and covering up the true observations of Nibiru.” Although I enjoy a good conspiracy theory, I will not support anything in the name of Planet X. If the basic science behind what we are led to believe are the foundation of Planet X existing is wrong, it seems a poor argument to say “the government did it”.

Therefore, the story that Planet X will arrive in 2012-21-December is, in my view, total bunkum (but it helps to sell doomsday books and DVDs by scaring people). Nibiru will remain in the realms of Sumerian myth.

2012: Planet X is not Nibiru


Wednesday, June 18th, Japanese researchers announced news that their theoretical search for a large mass in the outer Solar System has produced results. From their calculations, there might just be a planet, possibly a bit bigger than a Plutoid but certainly smaller than Earth orbiting beyond 100 AU from the Sun. But before we get carried away, this is not Nibiru, this is not proof of the end of the world in 2012; it is a new and very exciting development in the search for minor planets beyond the Kuiper Belt…

 In a new theoretical simulation, two researchers have deduced that the outermost reaches of the Solar System may contain an undiscovered planet. Patryk Lykawka and Tadashi Mukai of Kobe University have published a paper in the Astrophysical Journal detailing a minor planet that they believe may be interacting with the mysterious Kuiper Belt.

Kuiper Belt Objects (KBOs)


The Kuiper Belt occupies a huge region of space, approximately 30-50 AU from the Sun. It contains a vast number of rocky and metallic objects, the largest known body being the dwarf planet (or “Plutoid”) Eris. It has been known for many years that the Kuiper Belt has a few strange characteristics that may signal the presence of another large planetary body orbiting the Sun beyond the Kuiper Belt. One such feature is the aptly named “Kuiper Cliff” that occurs at 50 AU. This is an abrupt end to the Kuiper Belt, very few Kuiper Belt objects (or KBOs) have been observed beyond this point. This cliff cannot be attributed to orbital resonances with massive planets such as Neptune, and there doesn’t appear to be any obvious observational error. Many astronomers believe that such a sharp cut-off in KBO population may be due to an as-yet to be discovered planet, possibly as large as Earth. This is an object Lykawka and Mukai believe they have calculated to exist.


This research predicts a large object, 30-70% the mass of the Earth, orbiting at a distance of around 100-200 AU from the Sun. This object may also help explain why some KBOs and tran-Neptunian objects (TNOs) have some strange orbital characteristics (such as Sedna).

Ever since Pluto was discovered in 1930, astronomers have been looking for another more massive body that could explain the orbital perturbations observed in the orbits of Neptune and Uranus. This search became known as the “search for Planet X”, which literally meant the “search for an as yet unidentified planet.” In the 1980′s these perturbations were put down to observational error. Therefore, the modern-day scientific search for Planet X is the search for a large KBO or a minor planet beyond. Although Planet X may not be larger than the mass of the Earth, researchers are still very excited about finding more KBOs, possibly the size of a Plutoid, possibly a little bigger, but not much bigger.

“The interesting thing for me is the suggestion of the kinds of very interesting objects that may yet await discovery in the outer solar system. We are still scratching the edges of that region of the solar system, and I expect many surprises await us with the future deeper surveys.” – Mark Sykes, Director of the Planetary Science Institute in Arizona.

Planet X is not scary


 So where does Nibiru come in? Back in 1976 a controversial book called “The Twelfth Planet” was written by Zecharia Sitchin. Sitchin had interpreted some ancient Sumerian cuneiform texts (the earliest known form of writing) as a literal translation of the origin of humankind. These 6000 year old texts apparently reveal that an alien race known as the Annunaki travelled to Earth on a planet called Nibiru. It’s a long and involved story, but in a nutshell, the Anunnaki genetically modified primates on Earth to create homo sapiens to be their slaves. (I just worked out where the storyline for Kurt Russell’s 1994 movie Stargate probably came from…)

When the Anunnaki left Earth, they let us rule the planet until they return. All this may seem a little fantastical, and perhaps a little too detailed when considering it is a literal translation from 6000 year old texts. Sitchin’s work has been disregarded by the scientific community as many of his methods of interpretation are considered imaginative at best. Nevertheless, many people have taken Sitchin’s work literally, and believe Nibiru (in its highly eccentric orbit around the Sun) will be returning, possibly as soon as 2012 to cause all sorts of terror and destruction here on Earth. It is important to note here that I am not calling into question any archaeological, spiritual or historic evidence for Nibiru, I am simply pointing out the link between the 2012 Doomsday Planet X theory is based on very dubious astronomical “discoveries”; if this is the case, how can Planet X be considered to be the embodiment of Nibiru?

Then there’s the IRAS “discovery of a brown dwarf in the outer Solar System” in 1984 and the “NASA announcement of a 4-8 Earth mass planet travelling toward Earth” in 1993. Doomsayers (often with a book to sell) cling on to these astronomical discoveries as proof that Nibiru is in fact the Planet X astronomers have been searching for over the last century. Not only that, by manipulating the facts about these scientific studies, they “prove” that Nibiru is travelling toward us, and by 2012, this massive body will pass through the inner Solar System, causing all sorts of gravitational damage.

In its purest form, Planet X is an unknown, theoretically possible planet orbiting peacefully beyond the Kuiper Belt. If yesterday’s announcement does lead to the observation of a planet or Plutoid, it will be an incredible discovery that will help to shed some light on the evolution and characteristics of the mysterious outer reaches of the Solar System.

2012: No Killer Solar Flare


According to one of the many Doomsday scenarios we have been presented with in the run-up to the Mayan Prophecy-fuelled “end of the world” in the year 2012, this scenario is actually based on some science. What’s more, there may be some correlation between the 11-year solar cycle and the time cycles seen in the Mayan calendar, perhaps this ancient civilization understood how the Sun’s magnetism undergoes polarity changes every decade or so? Plus, religious texts (such as the Bible) say that we are due for a day of judgement, involving a lot of fire and brimstone. So it looks like we are going to get roasted alive by our closest star on December 21st, 2012!

Before we go jumping to conclusions, take a step back and think this through. Like most of the various ways the world is going to end in 2012, the possibility of the Sun blasting out a huge, Earth-damaging solar flare is very attractive to the doomsayers out there. But let’s have a look at what really happens during an Earth-directed solar flare event, the Earth is actually very well protected. Although some satellites may not be…

 The Earth has evolved in a highly radioactive environment. The Sun constantly fires high-energy particles from its magnetically dominated surface as the solar wind. During solar maximum (when the Sun is at its most active), the Earth may be unlucky enough to be staring down the barrel of an explosion with the energy of 100 billion Hiroshima-sized atomic bombs. This explosion is known as a solar flare and the effects of which can cause problems here on Earth.

Before we look at the Earth-side effects, let’s have a look at the Sun and briefly understand why it gets so angry every 11 years or so.

The Solar Cycle


First and foremost, the Sun has a natural cycle with a period of approximately 11 years. During the lifetime of each cycle, the magnetic field lines of the Sun are dragged around the solar body by differential rotation at the solar equator. This means that the equator is spinning faster than the magnetic poles. As this continues, solar plasma drags the magnetic field lines around the Sun, causing stress and a build up of energy (an illustration of this is pictured). As magnetic energy increases, kinks in the magnetic flux form, forcing them to the surface. These kinks are known as coronal loops which become more numerous during periods of high solar activity.

This is where the sunspots come in. As coronal loops continue to pop up over the surface, sunspots appear too, often located at the loop footpoints. Coronal loops have the effect of pushing the hotter surface layers of the Sun (the photosphere and chromosphere) aside, exposing the cooler convection zone (the reasons why the solar surface and atmosphere is hotter than the solar interior is down to the coronal heating phenomenon). As magnetic energy builds up, we can expect more and more magnetic flux to be forced together. This is when a phenomenon known as magnetic reconnection occurs.

Reconnection is the trigger for solar flares of various sizes. As previously reported, solar flares from “nanoflares” to “X-class flares” are very energetic events. Granted, the largest flares my generate enough energy for 100 billion atomic explosions, but don’t let this huge figure concern you. For a start, this flare occurs in the low corona, right near the solar surface. That’s nearly 100 million miles away (1AU). The Earth is nowhere close to the blast.

As the solar magnetic field lines release a huge amount of energy, solar plasma is accelerated and confined within the magnetic environment (solar plasma is superheated particles like protons, electrons and some light elements such as helium nuclei). As the plasma particles interact, X-rays may be generated if the conditions are right and bremsstrahlung is possible. (Bremsstrahlung occurs when charged particles interact, resulting in X-ray emission.) This may create an X-ray flare.

The Problem with X-ray Solar Flares


The biggest problem with an X-ray flare is that we get little warning when it is going to happen as X-rays travel at the speed of light (one of the record breaking 2003 solar flares is pictured left). X-rays from an X-class flare will reach the Earth in around eight minutes. As X-rays hit our atmosphere, they are absorbed in the outermost layer called the ionosphere. As you can guess from the name, this is a highly charged, reactive environment, full of ions (atomic nuclei, and free electrons).

During powerful solar events such as flares, rates of ionization between X-rays and atmospheric gases increase in the D and E region layers of the ionosphere. There is a sudden surge in electron production in these layers. These electrons can cause interference to the passage of radio waves through the atmosphere, absorbing short wave radio signals (in the high frequency range), possibly blocking global communications. These events are known as “Sudden Ionospheric Disturbances” (or SIDs) and they become commonplace during periods of high solar activity. Interestingly, the increase in electron density during a SID boosts the propagation of Very Low Frequency (VLF) radio, a phenomenon scientists use to measure the intensity of X-rays coming from the Sun.

Coronal Mass Ejections?


 X-ray solar flare emissions are only part of the story. If the conditions are right, a coronal mass ejection (CME) might be produced at the site of the flare (although either phenomenon can occur independently). CMEs are slower than the propagation of X-rays, but their global effects here on Earth can be more problematic. They may not travel at the speed of light, but they still travel fast; they can travel at a rate of 2 million miles per hour (3.2 million km/hr), meaning they may reach us in a matter of hours.

This is where much effort is being put into space weather prediction. We have a handful of spacecraft sitting between the Earth and the Sun at the Earth-Sun Lagrangian (L1) point with sensors on board to measure the energy and intensity of the solar wind. Should a CME pass through their location, energetic particles and the interplanetary magnetic field (IMF) can be measured directly. One mission called the Advanced Composition Explorer (ACE) sits in the L1 point and provides scientists with up to an hour notice on the approach of a CME. ACE teams up with the Solar and Heliospheric Observatory (SOHO) and the Solar TErrestrial RElations Observatory (STEREO), so CMEs can be tracked from the lower corona into interplanetary space, through the L1 point toward Earth. These solar missions are actively working together to provide space agencies with advanced notice of an Earth-directed CME.

So what if a CME reaches Earth? For a start, much depends on the magnetic configuration of the IMF (from the Sun) and the geomagnetic field of the Earth (the magnetosphere). Generally speaking, if both magnetic fields are aligned with polarities pointing in the same direction, it is highly probable that the CME will be repelled by the magnetosphere. In this case, the CME will slide past the Earth, causing some pressure and distortion on the magnetosphere, but otherwise passing without a problem. However, if the magnetic field lines are in an anti-parallel configuration (i.e. magnetic polarities in opposite directions), magnetic reconnection may occur at the leading edge of the magnetosphere.

In this event, the IMF and magnetosphere will merge, connecting the Earth’s magnetic field with the Sun’s. This sets the scene for one of the most awe inspiring events in nature: the aurora.

Satellites in Peril

 As the CME magnetic field connects with the Earth’s, high energy particles are injected into the magnetosphere. Due to solar wind pressure, the Sun’s magnetic field lines will fold around the Earth, sweeping behind our planet. The particles injected in the “dayside” will be funnelled into the polar regions of the Earth where they interact with our atmosphere, generating light as aurorae. During this time, the Van Allen belt will also become “super-charged”, creating a region around the Earth that could cause problems to unprotected astronauts and any unshielded satellites. For more on the damage that can be caused to astronauts and spacecraft, check out “Radiation Sickness, Cellular Damage and Increased Cancer Risk for Long-term Missions to Mars” and “New Transistor Could Side-Step Space Radiation Problem.”

As if the radiation from the Van Allen belt wasn’t enough, satellites could succumb to the threat of an expanding atmosphere. As you’d expect, as if the Sun hits the Earth with X-rays and CMEs, there will be inevitable heating and global expansion of the atmosphere, possibly encroaching into satellite orbital altitudes. If left unchecked, an aerobraking effect on satellites could cause them to slow and drop in altitude. Aerobraking has been used extensively as a space flight tool to slow spacecraft down when being inserted into orbit around another planet, but this will have an adverse effect on satellites orbiting Earth as any slowing of velocity could cause it to re-enter the atmosphere.

We Feel the Effects on the Ground Too


Although satellites are on the front line, if there is a powerful surge in energetic particles entering the atmosphere, we may feel the adverse effects down here on Earth too. Due to the X-ray generation of electrons in the ionosphere, some forms of communication may become patchy (or be removed all together), but this isn’t all that can happen. Particularly in high-latitude regions, a vast electric current, known as an “electrojet”, may form through the ionosphere by these incoming particles. With an electric current comes a magnetic field. Depending on the intensity of the solar storm, currents may be induced down here on the ground, possibly overloading national power grids. On March 13th 1989, six million people lost power in the Quebec region of Canada after a huge increase in solar activity caused a surge from ground-induced currents. Quebec was paralysed for nine hours whilst engineers worked on a solution to the problem.

Can Our Sun Produce a Killer Flare?


The short answer to this is “no”.

The longer answer is a little more involved. Whilst a solar flare from out Sun, aimed directly at us, could cause secondary problems such as satellite damage and injury to unprotected astronauts and blackouts, the flare itself is not powerful enough to destroy Earth, certainly not in 2012. I dare say, in the far future when the Sun begins to run out of fuel and swell into a red giant, it might be a bad era for life on Earth, but we have a few billion years to wait for that to happen. There could even be the possibility of several X-class flares being launched and by pure bad luck we may get hit by a series of CMEs and X-ray bursts, but none will be powerful to overcome our magnetosphere, ionosphere and thick atmosphere below.

“Killer” solar flares have been observed on other stars. In 2006, NASA’s Swift observatory saw the largest stellar flare ever observed 135 light-years away. Estimated to have unleashed an energy of 50 million trillion atomic bombs, the II Pegasi flare will have wiped out most life on Earth if our Sun fired X-rays from a flare of that energy at us. However, our Sun is not II Pegasi. II Pegasi is a violent red giant star with a binary partner in a very close orbit. It is believed the gravitational interaction with its binary partner and the fact II Pegasi is a red giant is the root cause behind this energetic flare event.

Doomsayers point to the Sun as a possible Earth-killer source, but the fact remains that our Sun is a very stable star. It does not have a binary partner (like II Pegasi), it has a predictable cycle (of approximately 11 years) and there is no evidence that our Sun contributed to any mass extinction event in the past via a huge Earth-directed flare. Very large solar flares have been observed (such as the 1859 Carrington white light flare)… but we are still here.

In an added twist, solar physicists are surprised by the lack of solar activity at the start of this 24th solar cycle, leading to some scientists to speculate we might be on the verge of another Maunder minimum and “Little Ice Age”. This is in stark contrast to NASA solar physicist’s 2006 prediction that this cycle will be a “doozy”.

This leads me to conclude that we still have a long way to go when predicting solar flare events. Although space weather prediction is improving, it will be a few years yet until we can read the Sun accurately enough to say with any certainty just how active a solar cycle is going to be. So, regardless of prophecy, prediction or myth, there is no physical way to say that the Earth will be hit by any flare, let alone a big one in 2012. Even if a big flare did hit us, it will not be an extinction event. Yes, satellites may be damaged, causing secondary problems such as a GPS loss (which might disrupt air traffic control for example) or national power grids may be overwhelmed by auroral electrojets, but nothing more extreme than that.



2012: No Geomagnetic Reversal


Using the Mayan Prophecy as an excuse to create new and explosive ways in which our planet may be destroyed, 20 12 2012 doomsayers use the geomagnetic shift theory as if it is set in stone. Simply because scientists have said that it might happen within the next millennium appears to be proof enough that it will happen in four years time. Alas, although this theory has some scientific backing, there is no way that anyone can predict when geomagnetic reversal might happen to the nearest day or to the nearest million years…

 Firstly, let’s differentiate between geomagnetic reversal and polar shift. Geomagnetic reversal is the change in the magnetic field of the Earth, where the magnetic north pole shifts to the South Polar Region and the south magnetic pole shifts to the North Polar Region. Once this process is complete, our compasses would point toward Antarctica, rather than northern Canada. Polar shift is considered to be a less likely event that occurs a few times in the evolutionary timescale of the Solar System. There are a couple of examples of planets that have suffered a catastrophic polar shift, including Venus (which rotates in an opposite direction to all the other planets, therefore it was flipped upside down by some huge event, such as a planetary collision) and Uranus (which rotates on its side, having been knocked off-axis by an impact, or some gravitational effect caused by Jupiter and Saturn). Many authors (including the doomsayers themselves) often cite both geomagnetic reversal and polar shift as being one of the same thing. This isn’t the case.

So, on with geomagnetic reversal…

How often does it happen?

The Earths interior (University of Chicago)
The reasons behind the reversal of the magnetic poles is poorly understood, but it is all down to the internal dynamics of Planet Earth. As our planet spins, the molten iron in the core flows freely, forcing free electrons to flow with it. This convective motion of charged particles sets up a magnetic field which bases its poles in the North and South Polar Regions (a dipole). This is known as the dynamo effect. The resulting magnetic field approximates a bar magnet, allowing the field to envelop our planet.


This magnetic field passes through the core to the crust and pushes into space as the Earth’s magnetosphere, a protective bubble constantly being buffeted by the solar wind. As the solar wind particles are usually charged, the Earth’s powerful magnetosphere deflects the particles, only allowing them into the polar cusp regions where the polar magnetic fieldlines become “open.” The regions at which these energetic particles are allowed to enter glow as aurorae.

Usually this situation can last for aeons (a stable magnetic field threaded through the North and South Polar Regions), but occasionally, the magnetic field is known to reverse and alter in strength. Why is this?


A chart showing Earths polarity reversals over the last 160 million years. Black = normal polarity, White = reversed polarity. From Lowrie (1997)

Again, we simply do not know. We do know that this magnetic pole flip-flop has occurred many times in the last few million years, the last occurred 780,000 years ago according to ferromagnetic sediment. A few scaremongering articles have said geomagnetic reversal occurs with “clockwork regularity” – this is simply not true. As can be seen from the diagram (left), magnetic reversal has occurred fairly chaotically in the last 160 million years. Long-term data suggests that the longest stable period between magnetic “flips” is nearly 40 million years (during the Cretaceous period over 65 million years BC) and the shortest is a few hundred years.

Some 2012 theories suggest that the Earth’s geomagnetic reversal is connected to the natural 11-year solar cycle. Again, there is absolutely no scientific evidence to support this claim. No data has ever been produced suggesting a Sun-Earth magnetic polarity change connection.

So, already this doomsday theory falters in that geomagnetic reversal does not occur with “clockwork regularity,” and it has no connection with solar dynamics. We are not due a magnetic flip as we cannot predict when the next one is going to occur, magnetic reversals occur at seemingly random points in history.

What causes geomagnetic reversal?

The model Earth, can a magnetic field be modelled in the lab? (Flora Lichtman, NPR)

Research is afoot to try to understand the internal dynamics of our planet. As the Earth spins, the molten iron inside churns and flows in a fairly stable manner for millennia. For some reason during geomagnetic reversal, some instability causes an interruption to the steady generation of a global magnetic field, causing it to flip-flop between the poles.

In a previous Universe Today article, we discussed the efforts of geophysicist Dan Lathrop’s attempts to create his own “model Earth,” setting a 26 tonne ball (containing a molten iron analogue, sodium) spinning to see if the internal motion of the fluid could set up a magnetic field. This huge laboratory experiment is testament to the efforts being put into understanding how our Earth even generates a magnetic field, let alone why it randomly reverses.

A minority view (which, again is used by doomsayers to link geomagnetic reversal with Planet X) is that there may be some external influence that causes the reversal. You will often see associated with the Planet X/Nibiru claims that should this mystery object encounter the inner Solar System during its highly elliptical orbit, the magnetic field disturbance could upset the internal dynamics of the Earth (and the Sun, possibly generating that “killer” solar flare I discussed back in June). This theory is a poor attempt to link several doomsday scenarios with a common harbinger of doom (i.e. Planet X). There is no reason to think the strong magnetic field of the Earth can be influenced by any external force, let alone a non-existent planet (or was that a brown dwarf?).

The magnetic field strength waxes and wanes…

Variations in geomagnetic field in western US since last reversal. The vertical dashed line is the critical value of intensity below which Guyodo and Valet (1999) consider several directional excursions to have occurred.

New research into the Earth’s magnetic field was published recently in the September 26th issue of Science, suggesting that the Earth’s magnetic field isn’t as simple as we once believed. In addition to the North-South dipole, there is a weaker magnetic field spread around the planet, probably generated in the outer core of the Earth.


The Earth’s magnetic field is measured to vary in field strength and it is a well known fact that the magnetic field strength is currently experiencing a downward trend. The new research paper, co-authored by geochronologist Brad Singer of the University of Wisconsin, suggests that the weaker magnetic field is critical to geomagnetic reversal. Should the stronger dipole (north-south) field reduce below the magnetic field strength of this usually weaker, distributed field, a geomagnetic reversal is possible.

“The field is not always stable, the convection and the nature of the flow changes, and it can cause the dipole that’s generated to wax and wane in intensity and strength,” Singer said. “When it becomes very weak, it’s less capable of reaching to the surface of the Earth, and what you start to see emerge is this non-axial dipole, the weaker part of the field that’s left over.” Singer’s research group analysed samples of ancient lava from volcanoes in Tahiti and Germany between 500,000 and 700,000 years ago. By looking at an iron-rich mineral called magnetite in the lava, the researchers were able to deduce the direction of the magnetic field.

The spin of the electrons in the mineral is governed by the dominant magnetic field. During times of strong dipolar field, these electrons pointed toward the magnetic North Pole. During times of weak dipolar field, the electrons pointed to wherever the dominant field was, in this case the distributed magnetic field. They think that when the weakened dipolar field drops below a certain threshold, the distributed field pulls the dipolar field off-axis, causing a geomagnetic shift.

“The magnetic field is one of the most fundamental features of the Earth,” Singer said. “But it’s still one of the biggest enigmas in science. Why [the flip] happens is something people have been chasing for more than a hundred years.”

Our meandering magnetic pole

The movement of Earth's north magnetic pole across the Canadian arctic, 1831--2001 (Geological Survey of Canada)

Although there appears to be a current downward trend in magnetic field strength, the current magnetic field is still considered to be “above average” when compared with the variations measured in recent history. According to researchers at Scripps Institution of Oceanography, San Diego, if the magnetic field continued to decrease at the current trend, the dipolar field would effectively be zero in 500 years time. However, it is more likely that the field strength will simply rebound and increase in strength as it has done over the last several thousand years, continuing with its natural fluctuations.


The positions of the magnetic poles are also known to be wondering over Arctic and Antarctic locations. Take the magnetic north pole for example (pictured left); it has accelerated north over the Canadian plains from 10 km per year in the 20th Century to 40 km per year more recently. It is thought that if the point of magnetic north continues this trend, it will exit North America and enter Siberia in a few decades time. This is not a new phenomenon however. Ever since James Ross’ discovery of the location of the north magnetic pole for the first time in 1831, it’s location has meandered hundreds of miles (even though today’s measurements show some acceleration).

So, no doomsday then?

 Geomagnetic reversal is an engrossing area of geophysical research that will continue to occupy physicists and geologists for many years to come. Although the dynamics behind this event are not fully understood, there is absolutely no scientific evidence supporting the claim that there could be a geomagnetic reversal around the time of December 21st, 2012.

Besides, the effects of such a reversal have been totally over-hyped. Should we experience geomagnetic reversal in our lifetimes (which we probably won’t), it is unlikely that we’ll be cooked alive by the Solar Wind, or be wiped out by cosmic rays. It is unlikely that we’ll suffer any mass extinction event (after all, early man, homo erectus, lived through the last geomagnetic shift, apparently with ease). We’ll most likely experience aurorae at all latitudes whilst the dipolar magnetic field settles down to its new, reversed state, and there might be a small increase in energetic particles from space (remember, just because the magnetosphere is weakened, doesn’t mean we wont have magnetic protection), but we’ll still be (largely) protected by our thick atmosphere.

Satellites may malfunction and migrating birds may become confused, but to predict world collapse is a hard pill to swallow.

In conclusion:

Geomagnetic reversal is chaotic in nature. There is no way we can predict it.
Simply because the magnetic field of the Earth is weakening does not mean it is near collapse. Geomagnetic field strength is “above average” if we compare today’s measurements with the last few million years.
The magnetic poles are not set in geographical locations, they move (at varying speeds) and have done ever since measurements began.
There is no evidence to suggest external forcing of internal geomagnetic dynamics of the Earth. Therefore there is no evidence of the solar cycle-geomagnetic shift connection. Don’t get me started on Planet X.

So, do you think there will be a geomagnetic reversal event in 2012? I thought not.

Once again, we find another 2012 doomsday scenario to be flawed in so many ways. There is no doubt that geomagnetic reversal will happen in the future for Earth, but we’re talking about time scales anything from an optimistic (and unlikely) 500 years to millions of years, certainly not in the coming four years…

No comments:

Post a Comment